王玮

广州市新港西路135号\r\n中山大学哲学系\r\n邮编:510275\r\n\r\n\r\n\r\n课程、考试、答疑等请联系 \r\n

教育背景: 

1993--1997. 中山大学计算机系. 计算机软件专业. 学士.\r\n2002--2007. 南京大学数学系. 基础数学专业. 博士.\r\n

职业经历: 

2007--2009. 新加坡国立大学数学系. 博士后.\r\n2009--现. 中山大学哲学系.\r\n

代表性论文: 

[1] Some Algebraic Properties of the Computably Enumerable Degrees. PhD Thesis. 2007. download\r\n\r\n[2] with Decheng Ding. On the definable ideal generated by the plus-cupping c.e. degrees. Archive for Mathematical Logic, 46: 321--346, 2007. download\r\n\r\n[3] with Decheng Ding. Modulo computably enumerable degrees by cupping partners. Science in China, Series A,, 50: 899--912, 2007.\r\n\r\n[4] with Decheng Ding. On definable filters in computably enumerable degrees. Annals of Pure and Applied Logic, 147: 71--83, 2007. download\r\n\r\n[5] Exact pairs and uniform upper bounds. Studies in Logic, 2: 18--29, 2009. download\r\n\r\n[6] with Klaus Ambos-Spies, Decheng Ding and Liang Yu. Bounding non-GL2 and R.E.A. Journal of Symbolic Logic, 74(3): 989--1000, 2009. download\r\n\r\n[7] with Chitat Chong and Liang Yu. The strength of the Projective Martin Conjecture. Fundamenta Mathematicae, 201(1): 21--27, 2010. download\r\n\r\n[8] Martin's Axiom and embeddings of upper semi-lattices into the Turing degrees. Annals of Pure and Applied Logic, 161(10): 1291--1298, 2010. download\r\n\r\n[9] Relative enumerability and 1-genericity. Journal of Symbolic Logic, 76(3): 897--913, 2011. download\r\n\r\n[10] Some reverse mathematics of Rainbow Ramsey theorems. preprint. download, Some parts appear as "Rainbow Ramsey theorem for triples is strictly weaker than the Arithmetic Comprehension Axiom" arXiv:1303.3327\r\n\r\n[11] with Liuzhen Wu and Liang Yu. Cofinal maximal chains in the Turing degrees. Proceedings of the American Mathematical Society, to appear. download\r\n\r\n[12] Omitting cohesive sets. 南京大学学报数学半年刊, 30(1): 40--47, 2013. download\r\n\r\n[13] Cohesive sets and rainbows. preprint. downloadarXiv:1303.3329\r\n\r\n[14] with Klaus Ambos-Spies. Every non-zero c.e. strongly bounded Turing degree has the anti-cupping property. Studies in Logic, 5(3): 1--10, 2012. download\r\n\r\n[15] Some logically weak Ramseyan theorems. Advances in Mathematics, 261:1--25, 2014. download ,arXiv:1303.3331\r\n\r\n[16] with Wolfgang Merkle, Frank Stephan, Jason Teutsch and Yue Yang. Selection by Recursively Enumerable Sets. In: T-H. Hubert Chan et al. (eds.) Theory and Applications of Models of Computation 2013, Lecture Notes in Computer Science, vol. 7876, pp. 144--155, Springer, 2013.\r\n\r\n[17] The Definability Strength of Combinatorial Principles. preprint. arXiv:1408.1465\r\n\r\n[18] Relative Definability of n-generics. preprint. arXiv:1511.08875\r\n

讲授课程: 

\r\n \r\n \r\n 2014学年:\r\n  \r\n \r\n 逻辑专业本科生《集合论》: 网盘\r\n \r\n \r\n \r\n 2014学年:\r\n  \r\n \r\n 中山大学哲学系逻辑专业一年级研究生《数理逻辑》,第一、二学期\r\n\r\n 教材: Slaman and Woodin. Mathematical Logic: a Berkeley undergraduate course\r\n\r\n 评分: 口头作业两次共 40 分, 期末闭卷考试 60 分\r\n\r\n 口头作业选以下列举的教材上习题或者附加题,每人限选不多于1到教材上的习题;请提前1周当面或者通过电子邮件预约口头作业;[ ] 中的数字是预约同学的学号尾数\r\n\r\n 口头作业: 教材的 1.1.2 (1) [115], (4) [657]; 1.4.1 (4) [656]; 2.3.1 (1) [659]; 3.3.1 (4) [679]; 4.1.1 (2) [114]; 4.2.1 (1) [111]; 4.5.1 (2); 5.2.1 (1) [655]; 5.3.1 (1); 5.7.1 (1); 6.1.3 (1), (2);\r\n\r\n 口头作业附加题: 讲解 Theorem 6.9; 讲解 Theorem 6.13; 讲义1: Exercise 6, Exercise 9, Exercise 13 (将陆续布置更多附加题)\r\n\r\n 延伸内容:讲义1 (Propositional compactness and applications)\r\n\r\n  \r\n \r\n \r\n \r\n 历年试题:\r\n  \r\n \r\n 2009-2010 代数试题:第一学期期中第一学期期末A第一学期期末B第二学期期中第二学期期末A第二学期期末B\r\n\r\n 2010-2011 代数试题:第一学期期中第一学期期末A第一学期期末B第二学期期中第二学期期末A第二学期期末B\r\n\r\n 2011-2012 代数试题:第一学期期中第一学期期末A第一学期期末B第二学期期中第二学期期末A第二学期期末B\r\n\r\n 2012-2013 代数试题:第一学期期中第一学期期末A\r\n \r\n \r\n \r\n\r\n\r\n \r\n